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Notice 

 

This document is a “Preview” document and does not contain material which ECC Tek considers 

confidential so everyone is free to copy and distribute this document without any obligations whatsoever 

to ECC Tek.  

 

The Binary BCH (BBCH) designs described in this document, the copyright to this document, the 

copyright to the C source code and Verilog source code which simulate and implement the BBCH 

encoder and decoder designs, and US Patent Number 5,754,563 entitled “Byte-Parallel System For 

Implementing Reed-Solomon Error-Correcting Codes” (the “PRS Patent”) protecting these designs are 

owned by 

 

     ECC Technologies, Inc. (ECC Tek) 

     4750 Coventry Road East 

     Minnetonka, MN  55345-3909 

 

      Phone:   952-935-2885 

Fax:    952-935-2491 

E-mail:  phil.white@ecctek.com 

Website: www.ecctek.com. 

 

The BBCH encoder and decoder designs described in this document must be licensed from ECC Tek in 

order to legally implement them. 
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1. Overview of Second Binary BCH Encoder and Decoder Designs 

This document describes digital logic designs for encoding and decoding Binary BCH (BBCH) codes 

which can correct t = 16, 24, 25, 28, 29, or 30 bits in error for use with NAND Flash memory chips with 

data field sizes of from K = 1024, 1025, …, 1053 bytes.  The encoder adds from 28 to 53 bytes of 

redundancy onto each data field.  The decoder handles 81 (t, K) options where the total number of bytes 

in a codeword, N, is limited to 1081 or less as shown in Table 3.  The limitation on N could easily be 

changed if needed.  

The BCH codes being used are binary and usually encoders for binary codes input and output 1 bit at a 

time and syndrome calculators input 1 bit at a time.  For this design the encoder and decoder input and 

output 8 bits at a time and appear, from the outside, to be a Reed-Solomon (RS) encoder and decoder 

operating on 8-bit symbols. 

Capital letters in the following Tables are variables measured in bytes and lower case letters are 

variables measured in bits. 

Table 1 shows selectable values for t and the number of redundant bits, r, needed before adjustment is 

made to make codewords an even number of bytes. 

 

t (bits) 16 24 25 28 29 30 

r (bits) 224 336 350 392 406 420 

Table 1  Selectable Values for t and r before Adjustment  

The number of bits of redundancy, r, added to a message for each value of t as shown in Table 1 was 

adjusted by multiplying the binary BCH generator polynomials by irreducible binary polynomials of low 

degree so that the adjusted amount of redundancy is a multiple of 8 and therefore is an even number of 

bytes which simplifies the design of the encoder and decoder.  Selectable values t and R are shown in 

Table 2. 

 

t (bits) 16 24 25 28 29 30 

R (bytes) 28 42 44 49 51 53 

Table 2  Selectable Values for t and R 
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2. Issues Involved in Licensing Synthesizable Verilog Code 

ECC Tek is in the business of licensing synthesizable Verilog code which describes the design of ECC 

encoders and decoders at a very high level.  Licensing synthesizable Verilog code presents a unique set 

of challenges. 

Since our customers do synthesis, ECC Tek has no control over what synthesis tools are used or how 

they are used.  ECC Tek does not know what its customer's synthesis tools will do in optimizing logic or 

if one customer’s tools will do the same things or different things than another customer’s tools. 

For example, suppose ECC Tek creates a number of Verilog modules so that the output of one module 

feeds the input of another.  Assume we have "upstream" and "downstream" modules.  If a downstream 

module forces a signal to a constant value, will the synthesis software, in all cases, be intelligent enough 

to know that certain upstream logic can be deleted because it is unneeded?  ECC Tek has no way of 

knowing the answer to that question. 

Another example is a Galois Field multiplier.  If ECC Tek designs a GF multiplier to multiply two 

variables, will all of the synthesis software tools reduce and minimize the logic needed if one of the 

inputs is a constant or should ECC Tek design specific multipliers to multiply by specific constants?  

ECC Tek has no way of knowing the answer to this question either.  Most likely, most synthesis 

software will properly reduce the logic, but, because of that uncertainty, ECC Tek has created many 

different multipliers that multiply by a constant such as the ones delivered to Customer called 

MULT_BY_XXXX. 

Gate counts and chip surface area required by these designs depend upon the circuit technology each 

licensee uses and the synthesis software they use. 

3. Different Ways to Synthesize the Verilog Code 

The programmable binary BCH encoder and decoder Verilog code that can be synthesized with one set 

of fixed (t, K) values so that specific circuits will be synthesized for that one case. 

The Verilog code can also be synthesized into programmable or configurable binary BCH encoder and 

decoder circuits and the sel_t and delta_k inputs can be used to configure the encoder and decoder for 

one (t, K) set of values. 

4. (t, K) Options 

There are 81 possible (t, K) options as shown in Table 3 on the following page. 
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Table 3  (t, K) Options 

t (bits) 16 24 25 28 29 30  

R (bytes) 28 42 44 49 51 53  

N (bytes) 1052 1066 1068 1073 1075 1077 K=1024 (bytes) 

N (bytes) 1053 1067 1069 1074 1076 1078 K=1025 (bytes) 

N (bytes) 1054 1068 1070 1075 1077 1079 K=1026 (bytes) 

N (bytes) 1055 1069 1071 1076 1078 1080 K=1027 (bytes) 

N (bytes) 1056 1070 1072 1077 1079 1081 K=1028 (bytes) 

N (bytes) 1057 1071 1073 1078 1080 - K=1029 (bytes) 

N (bytes) 1058 1072 1074 1079 1081 - K=1030 (bytes) 

N (bytes) 1059 1073 1075 1080 - - K=1031 (bytes) 

N (bytes) 1060 1074 1076 1081 - - K=1032 (bytes) 

N (bytes) 1061 1075 1077 - - - K=1033 (bytes) 

N (bytes) 1062 1076 1078 - - - K=1034 (bytes) 

N (bytes) 1063 1077 1079 - - - K=1035 (bytes) 

N (bytes) 1064 1078 1080 - - - K=1036 (bytes) 

N (bytes) 1065 1079 1081 - - - K=1037 (bytes) 

N (bytes) 1066 1080 - - - - K=1038 (bytes) 

N (bytes) 1067 1081 - - - - K=1039 (bytes) 

N (bytes) 1068 - - - - - K=1040 (bytes) 

N (bytes) 1069 - - - - - K=1041 (bytes) 

N (bytes) 1070 - - - - - K=1042 (bytes) 

N (bytes) 1071 - - - - - K=1043 (bytes) 

N (bytes) 1072 - - - - - K=1044 (bytes) 

N (bytes) 1073 - - - - - K=1045 (bytes) 

N (bytes) 1074 - - - - - K=1046 (bytes) 

N (bytes) 1075 - - - - - K=1047 (bytes) 

N (bytes) 1076 - - - - - K=1048 (bytes) 

N (bytes) 1077 - - - - - K=1049 (bytes) 

N (bytes) 1078 - - - - - K=1050 (bytes) 

N (bytes) 1079 - - - - - K=1051 (bytes) 

N (bytes) 1080 - - - - - K=1052 (bytes) 

N (bytes) 1081 - - - - - K=1053 (bytes) 
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5. Generator Polynomials 

Generator polynomials used after adjustment are shown in the C code. 

Generator polynomials for binary BCH codes are products of Minimal Polynomials, Mi(x), whose roots 

are (
i


i
)
2


i
)
4


i
)
16


i
)
32


i
)
n
 where n = 2

j
 for j=0,1,2 …J.  This sequence of powers of (

i
 

will repeat for some J and for that J, 
i
)
n
 = 1.  Sometimes this sequence will repeat sooner and the 

degree of g(x) will be less than wt, but in this case the degrees of g(x) are always wt where w is the 

width of the finite field elements used to locate the position of each bit.  In this case w=14 and the 

degrees of g(x) before adjustment are 14t as can be seen in Table 1. 

The irreducible binary polynomial used to generate a finite field with 2
14

 elements is 

 p(x) = 44443 octal = 100 100 100 100 011 =  x
14 

+ x
11 

+ x
8 

+ x
5
 +  x

 
+ 1. 

Any primitive element can be used as .  However, it is conventional to use “x” or 0002 hex as the 

primitive element, so that is what is used in the BBCH designs which is the same as for the RS designs. 

In order for an error-correcting code to correct t errors, 2t consecutive powers of must be roots of g(x).  

For binary BCH codes to correct t errors, the minimal polynomials M1, M3, …, M2t-1 must be factors 

of g(x).  That is, g(x) = M1*M3*M5*…*M2t-1.  For example, to correct 30 bits, M1, M3, …, M60 

must be factors of g(x). 

Minimal polynomials Mi were computed using a C program by multiplying factors (x-(
i
x-

i
)
2
) 

…x-
i
)
n
) .    

The coefficients of Minimal Polynomials are binary.  That is, all of the coefficients are either 0 or 1 so 

that g(x) is also binary and all of the coefficients of g(x) are also either 0 or 1 which necessarily must be 

the case for binary codes. 

Much of the decoder logic operates on 14-bit finite field elements internally, but data is input and output 

as 8-bit bytes. 

6. Versions of the C Code and Verilog Code 

The simulation and testing C code and the synthesizable Verilog code have been developed in versions. 

Versions of the C software have suffixes V1, V2, V3, etc.  The names of the C file code files are 

Customer binary bBCH V2 All cases V1.c, Customer binary BCH V2 All cases V2.c, etc. 

Some of the Verilog modules have module names with suffixes of 1, 2, 3,  etc., to distinguish the second 

version of the BBCH Verilog modules from the first version of the BBCH modules which use suffixes 

of A, B, C, etc.  For example, the first version of SYN1A is called SYN1A1.   
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Verilog modules used for multiplying two finite field elements have the same names as those modules 

for the first BCH designs. 

7. What This Document Does 

This document describes BBCH encoder and decoder versions which correct all error patterns with t or 

fewer bits in error and is intended to help the reader understand the BBCH encoder and decoder 

hardware designs which are described in synthesizable Verilog and the C modeling software so that the 

designs can be easily modified and maintained. 

8. What This Document Does Not Do 

This document does not often repeat data that can be found in the C or Verilog code.  For example, 

readers are referred to the C code to view the generator polynomials rather than repeating all of them in 

this document. 

This document is not intended to be a substitute for a textbook on coding theory.  It takes a lot of time, 

effort and study to understand algebraic coding theory.  There are many good books on coding theory 

which should be consulted to gain an in-depth understanding of the math and theory associated with 

Binary BCH codes.  It would be impossible for this document to cover all of the topics that a good book 

on coding theory covers so no attempt is made to do that. 

This document does not provide mathematical proofs of mathematical results that have already been 

proven in textbooks or papers on coding theory.  However, the C and Verilog models of the BBCH 

encoder and decoder designs can be used to verify that the BBCH system does, in fact, correctly correct 

all correctable error patterns. The C and Verilog models can also be used to determine the frequency of 

miscorrection. 

This document presents and uses a version of the well-known Berlekamp-Massey (“BM”) algorithm to 

solve the key decoding equation without presenting a proof of its validity.  The BM algorithm has been 

proven to be valid in various textbooks and papers on coding theory.  A version of the BM algorithm 

developed by Willard Eastman is used by ECC Tek in all of ECC Tek’s designs and is referred to as the 

“EBM” algorithm to stand for Eastman’s version of the Berlekamp-Massey algorithm. 

The term “key equation” is more correctly called the “key congruency” but the term “key equation” is 

used in most of the textbooks on coding theory so it will be used in this document also.   For binary 

BCH codes, the key equation is S(x)L(x)   V(x) mod x
2t

 or, in words, S(x) times L(x) is congruent to 

V(x) modulo x
2t

 where S(x) is the syndrome polynomial, L(x) is the error locator polynomial, V(x) is the 

error evaluator polynomial and t is the number of bits the code can correct. 

When operations are performed on polynomials modulo x
14

, all of the terms resulting from a polynomial 

operation, such as multiplication of two polynomials, of the form cix
i
 are 0 if i is greater than or equal to 

14 because x
14

 is a factor of all terms of the form cix
i
 when i is greater than or equal to 14 and x

14
 is 

congruent to 0. 
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It is well-known by coding theorists and stated in some textbooks on coding theory that the integer 

variable used in the EBM algorithm which ECC Tek refers to as “degLx” will be the actual degree of 

L(x) when decoding is successful.  This fact is used to determine when the decoder has failed, but a 

mathematical proof of this fact not provided. 

It has been proven in many textbooks that the degree of V(x) must be strictly less than the degree of L(x) 

when decoding is successful, and, if L(x) = 1, then V(x) must be 0.  These facts are used to simplify the 

decoder design but, again, are not mathematically proven. 

It has been proven that calculating the syndrome in one step by evaluating the received polynomial at , 


2
, 

3
, …, 

2t
 is equivalent to calculating the syndrome in two steps where the first step is to find the 

remainder of dividing r(x) by g(x) and the second step is evaluating the remainder at , 
2
, 

3
, …, 

2t
, 

but this fact is not proven in this document. 

This document does not provide a detailed description of the C code because most of the C code is self-

explanatory and also because the primary purpose of this document is to describe the hardware design – 

not the C software. 

9. References 

This document refers to other documents which are listed below: 

1. Customer’s “BBCH Design Requirements Document” referred to in this document as “Customer’s 

Requirements Document” 

2. A paper entitled “Euclideanization of the Berlekamp-Massey Algorithm” by Willard L. Eastman 

from Proceedings of the 1988 Tactical Communications Conference, Vol. 1 (1988) pp. 295-303.  

Referred to in this document as “Eastman’s Paper”. 

3. United States Patent Number 5,754,563 entitled “Byte-Parallel System for Implementing Binary 

BCH Error-correcting Codes”, May 19, 1998.  Referred to in this document as “the PRS Patent”. 

4. Reuse Methodology Manual, Third printing 1999.  Referred to in this document as “the RMM”. 

5. The book entitled “Algebraic Coding Theory”, written in 1968 by Elwyn Berlekamp.  Referred to in 

this document as “Berlekamp’s book”.  

If there is a conflict or contradiction between what this documents states, indicates or implies and what 

the Verilog code is, the Verilog code should be taken to be the final authority. 

10. Notation 

To simplify the notation used in this document, in the C code and in the Verilog code, English letters are 

used as symbols instead of Greek letters as much as possible. 
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A summary of the notation used by ECC Tek, Eastman and Berlekamp for the polynomials involved in 

solving the key decoding equation is given in Table 4. 

 

Table 4  Comparison of Notation used by ECC Tek, Eastman and Berlekamp 

 

 ECC Tek’s 

 Notation 

Eastman’s Notation 

(and Notation in the 

PRS Patent) 

Berlekamp’s 

 Notation 

Error Locator 

Polynomial 

L(x) b
T
(x), (x) and (x) (z) 

Auxiliary Locator 

Polynomial 

aL(x) b
O
(x) (z) 

Error Evaluator 

Polynomial 

V(x) p
T
(x) (z) 

Auxiliary Evaluator 

Polynomial 

aV(x) p
O
(x) (z) 

Last L(x) for 

Software Program 

last_L(x) b
T
(x)j-1 NA 

Last V(x) for 

Software Program 

last_V(x) p
T
(x)j-1 NA 

Number of Erasures ne  NA 

Erasure Location i eli Wi Xi 

Current 

Discrepancy 

dj dj 1
(k)

 

Last Nonzero 

Discrepancy 

lnd   

Number of Erasures 

Index 

nei  NA 

Degree L(x) 

Variable 

degLx l D(k) 
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Table 5 defines symbols, abbreviations and terms used in this document, in ECC Tek’s C and Verilog 

code, in Eastman’s paper, in Berlekamp’s book and in other papers and books on coding theory. 

 

Table 5  Definition of Symbols, Abbreviations and Terms 

 

aL(x) In ECC Tek’s notation, the auxiliary error Locator polynomial. 

aV(x) In ECC Tek’s notation, auxiliary error eValuator polynomial. 

BM Berlekamp-Massey – Elwyn Berlekamp and James Massey who are 

credited with discovering or inventing an efficient algorithm for 

solving the key decoding equation for BBCH codes.  There are 

numerous versions of the BM algorithm.  The version presented in 

Eastman’s paper is used in this document and denoted as the EBM 

algorithm. 

c[i] In ECC Tek’s C code, the codeword symbol in position i. 

ci In ECC Tek’s Verilog code, the codeword symbol in position i. 

dj The current discrepancy.  In this document, the current 

discrepancy = Vj where j is the EBM algorithm iteration number.  If 

the current L(x) being calculated in the decoder is the correct L(x), 

the discrepancy will be 0 from this point until the end of the EBM 

algorithm is reached.  Sometimes dj is denoted as just d. 

degLx The degree of L(x).  The variable degLx is the maximum degree – 

or an upper bound on the degree of L(x) – while L(x) is being 

formed from S(x) using the EBM algorithm.  Once L(x) has been 

formed from S(x), the degLx variable is the actual degree of L(x).  

The degLx variable is used by the final stages of the decoder to 

determine if the error pattern calculated by the decoder is legitimate. 

el[i] In the C code, erasure location i. 

eli In the Verilog code, erasure location i. 

g(x) The generator polynomial for an algebraic block code such as a 

BBCH code. g(x) = g0 + g1x+g2x
2
+…+gRx

R
 where R is the number 

of redundant symbols.  gR is always 1. 

gLx[] In the C code, a global variable for storing the coefficients of L(x). 
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K The number of symbols in each message or data field. 

L[i] In the C code, the coefficient of L(x) in position i. 

Li In the Verilog code, the coefficient of L(x) in position i. 

Li-1 In the Verilog code, the coefficient of L(x) in position (i-1). 

lnd In the Verilog and C code, the last nonzero discrepancy calculated 

while executing the BM algorithm.  The lnd variable is initialized to 

1. 

Lp[i] In the C code, the coefficient in position i of the polynomial which 

is the formal derivative of the error locator polynomial.  The formal 

derivative of L(x) is represented as L’(x) or Lpx or Lp(x). 

Lpx_eval The evaluation of Lp(x) at some specific value for x.  An evaluation 

is the value obtained by replacing the indeterminate “x” in a 

polynomial with an actual finite field element and evaluating the 

resulting expression. The evaluation Lp(x)  at “
-i
” is denoted as 

Lpx_eval or Lp(
-i
). 

Lpxi In the Verilog code, the coefficient in the polynomial which is the 

formal derivative of the error locator polynomial which is in the Th 

position. 

Lx_eval The evaluation of L(x) at some specific value for x.  An evaluation 

is the value obtained by replacing the indeterminate “x” in a 

polynomial with an actual finite field element and evaluating the 

resulting expression. The evaluation L(x)  at “
-i
” is denoted as 

Lx_eval or L(
-i
). 

mlci most likely codeword symbol in the ith position in the Verilog code. 

mle[i] In the C code, the most likely error symbol (symbol) in position i. 

mlei In the Verilog code, the most likely error pattern symbol in position 

i. 

mlmi In the Verilog code, the most likely message or data symbol i. 

N The number of symbols (symbols) in a codeword. 

nei The “number of erasures initiated” index. 



BBCH Programmable to t=30 Preview Final Document  Page 17 of 48 

 



 2008 ECC Technologies, Inc. All Rights Reserved. September 16, 2008 

R The number of redundant symbols in a codeword. 

r[i] In the C code, the received symbol in position i. 

ri In the Verilog code, the received symbol in position i. 

RS Binary BCH – Dr. Irving Reed and Dr. Gustave Solomon who are 

credited with discovering rs codes in 1960. 

s The number of erasures the code can correct. 

S(x) The syndrome polynomial. 

S[i] In the C code, the coefficient of S(x) in position i. 

Si In the Verilog code, the coefficient of S(x) in position i. 

t In most books on coding theory, the number of errors a block code 

can correct. 

Vi In the Verilog code, the coefficient of V(x) in position i. 

Vi-1 In the Verilog code, the coefficient of V(x) in position (i-1). 

Vx_eval The evaluation of V(x) at some specific value for x.  An evaluation 

is the value obtained by replacing the indeterminate “x” in a 

polynomial with an actual finite field element and evaluating the 

resulting expression. The evaluation V(x)  at “
-i
” is denoted as 

Vx_eval or V(
-i
). 

Wj In Eastman’s paper and in some versions of the C code, the jth 

erasure location.  The W can be thought of as standing for the W in 

“Where”. 

(x) In Eastman’s paper, the error locator polynomial.  probably stands 

for “position”. 

(x) In Eastman’s paper, the error evaluator or error magnitude 

polynomial.  Omega – where “m” stands for magnitude. 

 A primitive element of a finite field.  In this document  = 2 which 

is usually one of many primitive elements in a finite field. 
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(z) In Berlekamp’s book, the auxiliary error evaluator or auxiliary error 

magnitude polynomial which ECC Tek refers to as aV(x).  

Berlekamp uses the indeterminate “z” instead of “x” for 

polynomials with nonbinary coefficients I believe so that the reader 

can quickly distinguish between binary and nonbinary polynomials. 

 In Eastman’s paper, the number of erasures. 

(z) In Berlekamp’s book, the auxiliary error locator polynomial which 

ECC Tek refers to as aL(x).  Berlekamp uses the indeterminate “z” 

instead of “x” for polynomials with nonbinary coefficients I believe 

so that the reader can quickly distinguish binary and nonbinary 

polynomials. 

(z) In Berlekamp’s book, the error evaluator or error magnitude 

polynomial which ECC Tek refers to as V(x).  Berlekamp uses the 

indeterminate “z” instead of “x” for polynomials with nonbinary 

coefficients I believe so that the reader can quickly distinguish 

between binary and nonbinary polynomials. 

 

11. C Code 

The C code is used to test the encoder and decoder algorithms and to generate input data and expected 

results files for debugging the Verilog code.   The C code can be used to see if the decoder correctly 

corrects correctable error patterns and to determine the probability of miscorrection when the number of 

errors in a received word exceeds the capability of the code to correct. 

The WriteTestbenchFiles() function in the C program writes testbench files.  The other functions in the 

C program are used to test the encoder and decoder. 

After being compiled with a standard ANSI C compiler, the C program should run on any PC or Mac 

with no alteration. 

The C program is very basic.  Printf() statements can be inserted at various points to view variables as 

the program executes. 

What coding theorists call “symbols” are one short integer in the C code.  For binary BCH codes, the 

symbols are “bits” and therefore each bit is a separate short integer variable in the C code.  The bits are 

not packed into words so each bit is in a separate word. 

A 14-bit finite field element is used to identify each bit position in the binary BCH codewords.  These 

14-bit quantities are also one short integer in the C code. 
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Many of the variables in the C program are global variables which simplifies modification of the 

functions.  The message array, m[i], the codeword array, c[i], and the most likely error and codeword 

arrays, mle[i] and mlc[i], are some of the primary global variables.  Normally global variables are 

undesirable in software, but, in this case, they are helpful because different functions can operate on the 

same data without having to pass arguments from function to function.  Different encoding, decoding 

and testing functions can be selected by calls from main() to perform various operations.  Each possible 

encoding function assigns values to the global codeword array, c[i].  Errors can be added to the 

codeword c[i] array to create the received word r[i] array. Then any selected decoding function can be 

used to decode the r[i] array and generate the most likely error and codeword arrays, mle[i] and mlc[i]. 

The primary functions in the C program are the Encode() and Decode() functions.  Other testing and 

multiplication functions allow the Encode() and Decode() functions to be tested individually or tied 

together and tested as a system. 

There are three read-only tables in the programs.  Each of the tables is initialized by main().  Although 

algorithms could be used instead of tables to find reciprocals and do multiplications, tables are much 

faster and allow many more error patterns to be tested in the same amount of time than what could be 

tested if algorithms were used. 

Since the binary BCH codes described in this document use 14-bit bit location symbols, a multiplication 

table would be inordinately large so log and antilog tables are used for multiplying.  

The first table created by the C code is a list of finite field reciprocals. When a reciprocal of a finite field 

element is needed, this table is accessed. 

The second table is a table of powers of a primitive element, i, where i is the index or address of a one-

dimensional array and i is the value stored in the table or array at that address.  This table is used by 

the decoder to quickly determine i given i where i = 0x0000, 0x0001, ... , 0x3fff. 

The third table is a table of negative powers of a primitive element, -i, where i is the index or address 

of a one-dimensional array and -i is the value stored at that address or location.  This table is used by 

the decoder to quickly determine -i given i.  Received word and codeword locations are labeled as -i 

where i runs from 0x0000 to 0x03fff. 

The Decode() function determines the most likely error word, mle[i],  and the most likely codeword, 

mlc[i], for a particular received word, r[i]. 

When the Decode() function detects an abnormal condition, it sets the decode_Fail flag to TRUE (or 1) 

indicating that the decoding operation has failed.  The decode Fail flag is used to detect error patterns 

that exceed the capability of the decoder to correct. 

Some error patterns that exceed the correction capability of the code will either not be detected or will 

be miscorrected.  There is no way around this fact.  All decoders for algebraic block codes have this 

property.  If a severe error pattern happens to also be a codeword, no decoder can detect it or correctly 

correct the received word because the error pattern will map one legitimate codeword into another 

legitimate codeword and the syndrome will be all zeros indicating no errors. 
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The probability of miscorrection can be measured and quantified by using the C testing code.   Error 

patterns can be generated that exceed the correction capability of the code and then the Decode() 

function can be executed to determine the frequency of miscorrection. 

11.1. C Functions for Generating Verilog Input Data and Expected Results Files 

The WriteTestbenchFiles() function generates Verilog input data and expected results files for use with 

testbenches. 

Actual results generated by running Verilog simulations are compared with the contents of the expected 

results files generated by the WriteTestbenchFiles() function.  If the Verilog simulation results are 

correct, they will match the results generated by the WriteTestbenchFiles() function. 

11.2. C Functions for Testing the Encoder, Decoder and System 

The testing functions are useful for verifying that the decoder can correctly correct all correctable error 

patterns and for determining how frequently the decoder will declare a decoding failure when error 

patterns exceed the correction capability of the code.     

There is an error pattern generator in the C code that can be used to generate error patterns with any 

number of errors. 

Theoretically, it is possible to exhaustively test most of the decoder by assuming that an all-zero 

message has been encoded into an all-zero codeword because, if the syndrome generator is working 

correctly, the syndrome does not depend upon what message or codeword has been sent.  The syndrome 

only depends upon the error pattern so, once it has been determined that the syndrome generator is 

working correctly, the remainder of the decoder can be tested by assuming an all-zero codeword was 

sent.  Most of the C functions that generate error patterns use the error pattern generated to be the 

received word and assume that an all-zero codeword was sent.  If the user does not feel comfortable 

assuming an all-zero codeword was sent, then random messages can be generated, encoded into 

codewords and the error pattern can be added to the codeword to form the received word.    

The C functions included in the C program are listed in Table 6 with a brief description of what they do. 
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Table 6  C Functions Included in the C Code and What They Do 

 

Decode() Determines the most likely code word, mlc[], for a 

particular received word, r[]. 

Encode() Generates a code word, c[], from a message, m[]. 

Build_Log_Table() Builds log to the base  table. 

Build_Antilog_Table() Builds antilog table. 

Initialize_alphaToThe() Initializes the i table. 

Initialize_alphaToTheMinus() Initializes the -i table. 

Initialize_Mult() Initializes the finite field multiplication table. 

Initialize_Recip() Initializes the table of reciprocals. 

Manually_Test_System() Manually tests the encoder and decoder system. 

Multiply() Multiplies a_of_x by b_of_x to form c_of_x.  a_of_x, 

b_of_x and c_of_x are global variables. 

Test_Encoder() Tests the encoder. 

TestR_Decode() Test decoder's ability to correct equally probable 

random error patterns. 

TestRn_Decode(i) Test decoder's ability to correct i bit random error 

patterns. 

WriteTestbenchFiles() Writes Verilog input data and expected results 

testbench files. 

 

It is not possible to exhaustive test decoders which correct many symbols/bits when codewords are long 

because there are too many possible error patterns.  

The purpose of the TestR() functions is to determine the probability of miscorrection when the error 

pattern contains a large number of random errors. 
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12. Introduction to the Hardware Designs Described in Verilog 

ECC Tek’s hardware design strategy is to use only a very small number of basic Verilog language 

constructs as building blocks in developing BBCH encoder and decoder designs to ensure that the 

designs will be synthesizable, will achieve a high level of performance, will be easy to understand and 

maintain and can be quickly developed. 

The basic Verilog constructs used by ECC Tek are as follows: 

 Constructs that ECC Tek knows will synthesize into Registers 

 Constructs that ECC Tek knows will synthesize into Multiplexers 

 Constructs that ECC Tek knows will synthesize into State Machines 

 Constructs that ECC Tek knows will synthesize into Simple Combinatorial Logic 

ECC Tek does not view Verilog as a programming language such as C, but as a way to easily simulate 

and synthesize circuits that have been previously laid out in block diagrams as shown in the Figures of 

this document.  

The way ECC Tek designs digital logic is by first creating block diagrams (pictures) of the data flow 

required for a particular design to achieve a desired level of performance.  For example, most of the 

block diagrams shown in the Figures in this document were created before any of the Verilog code was 

written, and the resulting performance of the encoder and decoder was predicted based upon previous 

experience in designing encoders and decoders. 

Writing and debugging the Verilog code was the last step in the design process. 

By adhering to this discipline, ECC Tek is able to quickly create and debug designs that can be 

customized to each customer’s unique requirements. 

It is ECC Tek’s belief that, if ECC Tek did not develop designs using only a few well-proven constructs, 

then the time to finish a design and the risk of failure would be much higher than it is using this design 

methodology. 

In addition to the benefits of reducing development time and development risk, this design strategy also 

results in designs that are easy-to-understand, easy-to-modify and easy-to-maintain by the customer. 

The symbol used in the drawings for a register, R, the associated Verilog code and the circuit ECC Tek 

knows will be synthesized from the Verilog code are illustrated in Figure 1. 
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R

reset

clk

always @ (posedge clk or negedge reset)

begin

 if           (reset == 1'b0) R <= 0;

 else if  (cond1 == 1'b1) R <= a;

else if  (cond2 == 1'b1) R <= b;

else R <= R;

end

Verilog Code

Circuit

 Synthesized

Symbol

 in

 Drawings

0 1

1 0

1 0

0

cond1

cond2

a

b

R

a b

 

 

Figure 1  Registers 

 

The symbol used in the drawings to represent a multiplexer (mux), the associated Verilog code and the 

circuit ECC Tek knows the Verilog code will be synthesized into are shown in Figure 2. 

 

 

always @ (sel or a or b)

case(sel)

 1'b0: c=a;

 1'b1: c=b;

default: c=a;

endcase

Verilog Code
Circuit

 Synthesized

Symbol

 in

 Drawings

1 0sel

a b

c

1 0sel

a b

c
 

 

Figure 2  Multiplexers (Muxes) 

 

 

State Machines combine a state register with a set of muxes and ECC Tek knows the Verilog code will 

synthesize into a circuit of the form shown in Figure 3.  A sample of the Verilog code for implementing 

a state machine can be seen by looking at the SM Verilog code in the PPU module, for example. 
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Figure 3  Generic State Machine 

 

A generic control unit is shown in Figure 4.  It consists of a number of registers (often up and down 

counters) used for control purposes and, usually, a state machine (“SM”) to implement the control logic.  

In come cases the control is done completely by combinatorial logic and there is no state machine. 
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Figure 4  Generic Control Unit with a State Machine 

 

13. Verilog Coding Style and Signal Naming Conventions 

The encoder and decoder Verilog code has been written to, for the most part, comply with the Verilog 

coding style guidelines recommended in the RMM. 

The Verilog code is written in a synthesizable form so that synthesizer software can be used to 

synthesize the actual circuits.  This makes the BBCH designs independent of IC vendor. 

The Verilog code can be synthesized to be implemented in an ASIC, a structured ASIC or in an FPGA. 
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Each Verilog module is in a separate file.  The names of the files are the same as the names of the 

modules they contain with the addition of the “.v” filename extension.  All filenames use primarily 

capital letters.  For example, the file named “MULTA.v” contains the Verilog module named MULTA. 

All signal or variable names in Verilog use lowercase letters. 

All Verilog module inputs are prefixed with “i_” to indicate “input” and all Verilog module outputs are 

prefixed with “o_” for “output”.  For example, i_clk could be the name of a clock input and o_clk could 

be the name of a clock output. 

The Verilog code is written in a style that makes it easy to spot errors and make changes.  All input and 

output ports to all of the modules are on separate lines and all register and wire type variable 

declarations are on separate lines. 

14. General Hardware Design Development Methodology 

The design methodology used to develop the BBCH encoder and decoder hardware designs was to 

develop them in “steps” as follows: 

1. Use a variation of the well-proven and efficient Berlekamp-Massey (“BM”) algorithm for 

decoding.  ECC Tek uses one of many variations of the BM algorithm for decoding as described 

by Willard Eastman in Eastman’s paper and refers to it as the “EBM” algorithm. 

2. Implement encoder and decoder algorithms in C to prove they work correctly and to generate 

input data and expected results files for debugging the Verilog code. 

3. Thoroughly test the C models. 

4. Create an initial “skeleton” version of the decoder that works, but does not have all of the final 

features required. 

5. Add features to the “skeleton” version of the decoder to create a series of decoder versions until 

all of the required features have been successfully implemented.  Each version is one “step”.  If 

we are unsuccessful in implementing a “next step”, then we can always go back to the previously 

successful last step and try again. 

6. Repeat the above development process for the encoder. 

7. Use the C models and Verilog testbenches to debug and validate the designs. 

15. Basic Logic Design Concepts Used by ECC Tek 

All of the blocks of logic in the encoder and decoder can be divided into two parts – one part is the 

“control structure”, “control unit” or just “control” and the other part is the “data flow structure”, “data 

flow unit” or just “data flow” as illustrated in Figure 5.  The control unit receives status signals from the 
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data flow unit and sends control signals to the data flow unit to control the flow of data.  Control signals 

are generally fed into and out of the control unit and data is fed into and out of the data flow unit. 

Control Structure

or

Control Unit

or

Control

Data Flow Structure

or

Data Flow Unit

or

Data Flow

Control Bits or

 Control Signals

Status or

 Condition Bits

Control Out Data Out

Control In Data In

 

 

Figure 5  General Form for all Logic Blocks 

 

State machines are described in Verilog in a standard format as described in the RMM so that the 

Verilog code for a SM will synthesize into a logic circuit of the form shown in Figure 3. 

Probably the best way to understand the SM logic is to look at the Verilog code.  State diagrams can also 

be drawn from the Verilog code, but viewing the Verilog code is how ECC Tek creates the SM.  The 

Verilog statements are usually simple, easy to follow and easy to understand.  All of the state machines 

used in the encoder and decoder are very simple and usually only have a few states. 

16. Drawing Conventions  

In the drawings, the data flow is usually top down. 

The control unit for a block of logic is usually drawn to the left of the data flow unit. 

All Galois Field full multipliers are drawn with a dot (“.”) or “x” inside a box.  Partial Galois Field 

multipliers are drawn with a star (“*”) inside a box. 
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17. Implementing Finite Field Operations in Digital Logic 

The encoder performs operation in a finite (or Galois) field with 2 1-bit elements or “bits”. 

The decoder performs operations in a finite field with 2 1-bit elements “bits” and also in another finite 

field with 16,384 14-bit elements. 

The finite field operations used for encoding and decoding BBCH codes are as follows: 

 addition of two variable finite field elements, 

 multiplication of a variable finite field element by a constant finite field element, 

 multiplication of two variable finite field elements, and  

 finding the reciprocal (or inverse) of a finite field element. 

Addition of finite field elements is a bit-wise exclusive-or (XOR) operation. 

The finite field multiplier that multiplies two variable finite field elements is a Verilog module called 

MULTA.  MULTA is a highly structured full multiplier as described in the PRS Patent and illustrated in 

the top part of Figure 6. 

If n multipliers are used and one of the inputs is common to all n multipliers, then the common 

multiplier logic that would normally be implemented inside each multiplier can be pulled out and 

implemented outside the multiplier only one time rather than n times.  ECC Tek calls the resulting 

multiplier with the missing piece a “partial” multiplier.  Partial multipliers are illustrated in bottom part 

of Figure 6. 
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Figure 6  Full Multiplier (top) and Partial Multiplier (bottom) 

 

If an intelligent synthesizer is used, the synthesizer should also recognize that part of the multiplier is 

common and the result of synthesizing full multipliers and partial multipliers should be the same.  Since 

the synthesis result is synthesizer-dependent, ECC Tek provides both full and partial multiplier versions 

of the Verilog modules. 
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Multipliers that multiply a variable finite field element by a constant field element are implemented as 

shown in Figure 7.  The constant, B, determines the connections in Figure 7. 

Multipliers that multiply a variable by a constant are separate Verilog modules.  The Verilog module 

that multiplies by 0ABC is called MULT_BY_0ABC. 

 

A

The Connections are Determined by the Constant  "B"

C[13] C[0]

C = AB

A[0]

C[1]

A[1]

A[2]

A[13]

...

... ... ...

 

Figure 7  Multiplier that Multiplies the Variable “A” by the Constant “B” 

 

If reciprocals are needed, they are stored in a ROM.  Reciprocals are not needed in binary BCH 

decoders, but are needed for RS decoders. 

18. Encoder Versions 

Only one version of the encoder was developed and called ENCODERA1.  A block diagram of 

ENCODERA1 is shown in Figure 8. 
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Figure 8  ENCODERA1 

 

The encoder multiplies m(x) by x
r
, divides x

r
 m(x) by g(x), finds the remainder, and appends the 

remainder onto m(x) as the redundancy.  The mathematics involved in encoding is shown in Figure 9.  

 

 

Figure 9  Encoder Mathematics 

 

The message symbols/bits are shown as a row vector that is multiplied by a generator matrix.  

Multiplication of the row vector by the generator matrix results in generating the required redundancy 

which is m(x) x
r
 mod g(x). 

 

An iterative circuit for implementing the operations shown in Figure 9 is shown in Figure 10. 
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Figure 10  Iterative Serial Encoder Circuit 

 

The input message bits, mi, are multiplied by x
r
 mod g(x).  The “&X” symbol indicates an AND 

multiplication operation.  One input to the “&X” box is a “bit”.  The other input is a 14-bit finite field 

element.  The multiplication operation consists of 14 AND gates which is referred to as an “AND 

MULTIPLY” operation or an “&X” operation. 

 

Multiplication by “x” as shown in Figure 10 is a left shift with zero enter. 

 

The iterative circuit shown in Figure 10 is a bit-serial circuit and is applicable to situations where input 

bits are received serially. 

 

To handle 8-bits at a time, the serial circuit of Figure 10 is “parallelized” as shown in Figure 11 to 

receive 8 bits simultaneously.  There is still only one accumulator/register in Figure 11 as in Figure 10, 

but the rest of the logic is duplicated 8 times to operate on all 8 input bits simultaneously. 

 

The circuit shown in Figure 11 is implemented as the BBCH Encoder circuit with the addition of a set of 

AND gates inserted into the feedback loop which enables the BBCH Encoder control logic to zero the 

feedback. 

 

 

 

 

Figure 11  Parallelized Encoder Circuit 

 

 

19. Encoder Signal Definitions 

Input signals have a prefix of “i_”.  Output signals have a prefix of “o_”.  For example, i_symbol_valid 

is an input signal and o_symbol_valid is an output signal. 

 

 

Signal Name Description 

i_rst Asynchronous reset, active low. 

i_clk Synchronous clock, active on rising edge. 
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i_abort Abort encoding . 

i_k_delta[5:0] Value added to 512 to form K. 

i_sel_t[2:0] t  value selected. 

i_byte[7:0] Input byte. 

i_byte_valid Input byte valid. 

i_enable_parity 
Enable parity bytes to be output. Parity bytes will 

be outputted when this signal is asserted. 

o_byte[7:0] Output byte. 

o_byte_valid Output byte valid. 

o_first_byte First output byte valid. 

o_last_byte Last output byte valid. 

 

Table 7  Encoder Signal Definitions 
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20. Decoder Latency 

Decoder latency is defined as the number of clock cycles from the last input byte received by the 

decoder to the first byte outputted. 

All of the decoder versions described in this document have a variable latency. 

Let T be the number of errors that actually occur and t be the maximum number of errors the decoder is 

configured to correct. 

The decoder latency is S + P + I + O where 

  S = the latency of the Syndrome Generator 

  P = the latency of the PPU 

  I  = the latency of the Initialization section 

 O = the number of overhead cycles  

S = 0 or r depending upon which syndrome generator is used where r is the number of "bits" of 

redundancy.  S = 0 if SYNB is used.  S = r if SYN1+SYN2 is used.  r can vary from 224 to 424 so it 

takes a significant amount of time to calculate the syndrome if SYN1+SYN2 is used instead of SYNB.  

However, SYNB will probably require more chip surface area than SYN1+SYN2. 

The latency of the PPU depends upon the number of errors the decoder is configured to correct, t, and 

the number of errors that actually occur, T.  P = tT
 
if PPUB1 or PPUC1 is used.  P = T if PPUF1 is used.  

If T = 0, the latencies are equal, but if T = 30, for example, then the PPUF latency will be 30 while the 

PPUB1 or C latency will be 900 cycles.  PPUF1 most likely will take much more area than PPUB1 or 

C1.  In general, the PPU latency is 2tT/P where P is the amount of parallelism in the PPU.  For PPUB1 

and C1, P=2.  

I=1081-N where N is the number of "bytes" in a codeword.  I could be reduced to 0, but it would take 

many more gates.   

O is the overhead which is 12 cycles. 

The above formula for decoder latency agrees with what was measured except for the end cases when 

T=t.  The latency is slightly different when T=t because they are end cases.  The case when t = T = 30 is 

slightly different from the other end cases because it is the last end case.  These minor variations are due 

to the way the state machine controller is implemented in the PPU. 
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21. Decoder Versions 

ECC Tek has delivered the following 5 decoder versions to Customer:  DECODERB1, DECODERB2, 

DECODERB3, DECODERC1 and DECODERC2. 

Decoders B1, B2 and B3 retain the pause signal as it was implemented in the first binary BCH designs 

but with improvements to increase the effectiveness of the pause signal. 

The pause function was improved from previous versions by observing that the only modules which 

must be clocked with the output clock and therefore need to be paused are EVAL, XOR and the reading 

of the DFIFO.  In earlier versions of the decoder, INIT was also paused. 

To improve the pause behavior, the pause signal was removed from INIT and changes were made so the 

PPU and INIT modules hold their outputs after setting their output go bits and stay in a WAIT state until 

the next section of logic clears the go bits. 

The pause signal should only be used by logic at the output of the DECODER after the first output byte 

valid is asserted and before the last output byte valid signal is asserted. 

If the DFIFO is implemented by two RAM buffers in a ping-pong fashion, the pause signal can be used 

to temporarily pause the decoder.  With that type of design the input would normally be disabled until at 

least one of the RAM buffers is empty.  Incoming received data would be written to the two buffers in a 

ping-pong fashion – first one and then the other.   

All of the decoders use a DFIFO which correctly models Customer’s dual-port RAM FIFO, contains 

changes to improve the way the pause signal is handled from previous versions, and uses a k_delta input 

signal instead of sel_k so that 30 K values (1024 to 1053) are selectable. 

21.1. DECODERB1  

A block diagram of DECODERB1 is shown in Figure 12.  DECODERB1 is implemented in the same 

fashion as the first Binary BCH decoder with a pause signal that freezes all of the registers when the 

pause is asserted. 

The decoder latency for DECODERB1 = r + tT + 1081-N + 12 as defined above.  When t = T, the 

formula is not precise, but very close to the actual latency. 
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Figure 12  DECODERB1 

 



BBCH Programmable to t=30 Preview Final Document  Page 37 of 48 

 



 2008 ECC Technologies, Inc. All Rights Reserved. September 16, 2008 

21.2. DECODERB2 

A block diagram of DECODERB2 is shown in Figure 12.  DECODERB2 contains the pause signal. 

DECODERB2 has a significantly lower latency than DECOBERB1 because of the use of SYNB to 

replace SYN1+SYN2, but the gate count is also higher. 

The decoder latency for DECODERB2 = tT + 1081-N + 12 as defined above.  When t = T, the formula 

is not precise, but very close to the actual latency. 
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Figure 13  DECODERB2 
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21.3. DECODERB3 

DECODERB3 has close to the lowest possible latency.  The latency could be reduced further only if 

INITC1 were replaced by a very high gate count INIT module. 

The decoder latency for DECODERB2 = T + 1081-N + 12 as defined above.  
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Figure 14  DECODERB3 
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21.4. DECODERC1 

 

DECODERC1 has the pause signal completely removed from the Verilog modules.  The same effect can 

be achieved through synthesis by fixing the pause signal at 0. 
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Figure 15  DECODERC1 
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21.5. DECODERC2 

DECODERC2 has the pause signal completely removed from the Verilog modules except for the 

PFIFO1 module.   

DECODERC2 implements a pause FIFO (PFIFO1) at the output of the decoder to implement the pause 

function without pausing the actual decoding logic. 

The decoder latency for DECODERC2 = r + tT + 1081-N + 12 + L where L is the latency of PFIFO1.  

When t = T, the formula is not precise, but very close to the actual latency. 
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Figure 16  DECODERC2 
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22. Decoder Clocking Options 

22.1. Decoder Clocks 

Most of ECC Tek’s previous decoder designs have used only one clock, but it is possible to have 

separate and independent clocks for the input logic, the PPU and the output logic.  If the clocks are not 

synchronized, then logic would have to be added to resynchronize signals that crossed clock domains. 

Clocking the PPU at a higher rate would reduce the decoder delay and reduce the DFIFO size needed. 

Clocking the output with a separate clock allows the output to be paused by gating the clock. 

22.2. Gating the Clocks 

ECC Tek normally operates under the assumption that gating the clock is not acceptable.  If gating the 

clock is acceptable, a number of options are opened up such as not clocking either the encoder or 

decoder if they are not being used and pausing the output by gating the output clock. 

23. Decoder Signal Definitions 

Input signals have a prefix of “i_”.  Output signals have a prefix of “o_”.  For example, i_symbol_valid 

is an input signal and o_symbol_valid is an output signal. 
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Signal Name Description 

i_rst Asynchronous reset, active low 

i_clk Synchronous clock, active on rising edge 

i_abort Abort decoding 

i_pause 

Pause decoding.  i_pause should only to be 

asserted after o_first_byte has been asserted and 

before o_last_byte is asserted. 

i_k_delta[5:0] Value added to 512 to form K 

i_sel_t[2:0] t value selected 

i_byte[7:0] Input byte 

i_byte_valid Input byte valid 

o_byte_valid Output byte valid 

o_byte[7:0] Corrected output byte 

o_decode_fail Decoder failed 

o_error_count[4:0] 

Number of errors corrected in a page. When 

o_last_byte is asserted, the o_error_count[4:0] is 

updated for the current page 

o_error_cnt_valid Error count valid 

o_first_byte 
Asserted when the first output byte is valid at the 

output 

o_last_byte 
Asserted when the last output byte is valid at the 

output 

o_syn_not_0 Syndrome is not 0 

 

Table 8  Decoder Signal Definitions 
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24. Syndrome Generator Mathematics 

The syndrome generator performs the mathematical operations shown in Figure 17.  The received word 

symbols/bits, ri, as a row vector are multiplied by the transpose of the parity check matrix, H
T
, as shown 

in Figure 17.  Another way to view the syndrome generation process is that the received word 

polynomial, r(x), is evaluated at 
1
, 

2
,

3
, …, 

2t
. 

 

 

 

Figure 17  Syndrome Generator Mathematics 

 

The Syndrome can also be generated by first dividing the incoming received word polynomial by g(x) to 

find the remainder, r(x), and then evaluating the remainder at 
1
, 

2
,

3
, …, 

2t
.  The two methods are 

equivalent. 

 

Figure 18 shows the operations involved in dividing the received word polynomial by g(x) to find the 

remainder. 

 

Figure 19 shows the operations involved in evaluating the remainder at 
1
, 

2
,

3
, …, 

2t
. 

 

 

 

Figure 18  Dividing the Received Word Polynomial by g(x) to find the Remainder 

 

 

 

Figure 19  Evaluating the Remainder at 
1
, 

2
,

3
, …, 

2t 

 

 

25. Syndrome Generator Circuits 

The SYNB1 module generates the syndrome in one step as shown in Figure 17.  The SYN1D1 module 

divides r(x) by g(x) to find the remainder as shown in Figure 18 and the SYN2C1 module evaluates the 

remainder of dividing r(x) by g(x) at 
2
, 

3
, …, 

2t
. 

25.1. SYNB1 

SYNB1 implements the circuit shown in Figure 20. 
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Figure 20  SYNB1 

 

25.2. SYN1D1 

 

An iterative serial circuit for implementing the SYN1D1 operations is shown in Figure 21. 

 

 

 

Figure 21  Iterative Serial Circuit for SYN1 

 

The circuit shown in Figure 21 is parallelized to form SYN1D1 as shown in Figure 22.  The 

multiplication by x operations are done modulo g(x).  g(x) is one of 6 g(x)s selectable by input signals. 

 

 

 

Figure 22  SYN1D1 

 

 

25.3. SYN2C1 

 

SYN2C1 evaluates the remainder from SYN1D1 at 
2
,

3
, …, 

2t
 as shown in Figure 23. 

 

 

 

Figure 23  SYN2C1 

 

SYN2C1 does not use a parallelized version of the circuit because, if a parallelized version was used, 

there would be no need to split SYN into SYN1 and SYN2.  A parallelized version of SYN2C1 would 

be the same as SYNB and would take the same number of gates and so it would not make any sense to 

have a parallelized version of SYN2. 

 

26. DFIFO 

 

The DFIFO is implemented by Customer in an off-chip circuit with interfaces with the BBCH decoder 

logic. 

The DFIFO, as implemented by ECC Tek, is configured to write the first K bytes of data to a FIFO and 

skip the redundant symbols. 
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27. PPU 

The PPU transfers the syndrome from the Syndrome Generator to the PPU’s V(x) registers when it 

receives a go signal. 

The PPU then calculates the error locator polynomial, L(x), and the degree of L(x), degLx, from the 

syndrome polynomial, S(x) according to the EBM algorithm. 

The same EBM algorithm is used in the BBCH decoder as it is used in the RS decoder, but some 

simplifications have been made for the binary case. 

For binary BCH codes, every other discrepancy should be 0.  The way the EBM algorithm was being 

initialized for RS codes had to be changed in order to make every other discrepancy 0. 

Several versions of the EBM algorithm were developed to show how the original EBM algorithm needs 

to be changed for the binary case.  The changes made are presented in a Companion Document to this 

document.  This document deals only with the final EBM algorithm as shown in Figure 24. 

 

 

 

Figure 24  Final EBM Algorithm (V5) 

 

 

The key equation is S(x)L(x)   V(x) mod x
2t

.  For RS codes R=2t so the key equation is 

S(x)L(x)   V(x) mod x
R
. 

 

The EBM algorithm requires the use of two “auxiliary” polynomials which ECC Tek calls aL(x) and 

aV(x).  One auxiliary polynomial is associated with L(x) and the other with V(x). 

 

There is also an auxiliary key equation which is S(x)aL(x)   aV(x) mod x
2t

.  In order to make every 

other discrepancy 0, aL(x) and aV(x) must be initialized to the same values as L(x) and V(x) which is 

different from the way aL(x) and aV(x) were initialized in the RS case.  Both initializations are valid and 

both initializations produce correct results, but only one initialization results in every other discrepancy 

being 0 which is required in order to simplify the algorithm. 

 

Initially, the EBM algorithm guesses that 0 errors have occurred or, in other words, that the correct L(x) 

is L(x) = 1.  This is a reasonable guess because, in many situations, 0 errors is the most likely error 

pattern. 

 

If the initial L(x) is 1, then the initial V(x) must be S(x) because, if we substitute L(x) = 1 into the key 

equation, the key equation becomes S(x)1   V(x) mod x
2t

, and V(x) must be S(x) to satisfy the key 

equation. 

 

However, we know from coding theory that in order for L(x) = 1 to be the correct L(x), V(x) must be 0, 

which means the syndrome must be all zeros. 
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The EBM algorithm examines one coefficient of V(x) in each iteration of the algorithm.  The V(x) 

coefficient being focused on for the jth iteration of the EBM algorithm is called the jth “discrepancy” or 

dj.  Initially, j = 0 and d0 = V0 = S1.  Sometimes dj is referred to as d. 

 

Initially, if d0 = V0 = S1  0, the EBM algorithm knows that the correct or valid L(x) is not L(x) = 1, 

that the initial guess that L(x) = 1 must be modified and that the degree of L(x) must be increased.  The 

EBM algorithm specifies how L(x) must be modified and how this iterative procedure continues until 

the correct L(x) and the correct degLx are determined.  It is difficult to understand why the EBM 

algorithm works correctly, but it has been proven to be valid in papers and textbooks on coding theory.  

Fortunately, even though it is difficult to understand why the EBM algorithm works, it is not difficult to 

implement the EBM algorithm as shown in Figure 24. 

 

The PPU implements the EBM algorithm.  A top level block diagram of a PPU with a parallelism level 

P = 2 is presented in Figure 25. 

 

 

Figure 25  P=2 PPU Top Level Block Diagram 

 

 

Details of what is in the boxes in Figure 25 are shown in the following Figures. 

 

 

 

Figure 26  P=2 PPU L Section 

 

 

 

Figure 27  P=2 PPU Branch Section 

 

 

 

Figure 28  P=2 PPU V Section 

 

When operations are performed on polynomials, operations are being performed on each coefficient of 

each polynomial.  For example, if we add two polynomials, we are adding the coefficients.  If we 

multiply a polynomial by a value, we are multiplying each of the coefficients of the polynomial by that 

value. 

A P=2 PPU generates two coefficients of the next L(x) and two coefficients of the next aL(x) in one 

clock cycle and, simultaneously generates two coefficients of the next V(x) and two coefficients of the 

next aV(x).  Eight new coefficients are generated simultaneously. 
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When the PPU has finished calculating L(x) and the degLx, it sets an output control bit called 

“o_PPU_full” which indicates to the next module in the pipeline that next L(x) and degLx values are 

available. 

After the PPU sets the “o_PPU_full” bit, the PPU waits for the next module in the pipeline to transfer 

the L(x) and degLx values.  The following module in the pipeline may be busy, and may not be able to 

input the new L(x) and degLx values immediately.  When the following module is not busy, it transfers 

the new L(x) and degLx values into its registers from the PPU and clears the “o_PPU_full” bit which 

triggers the PPU to stop waiting for the got bit to be cleared and start waiting for the next “go” signal 

again. 

The P=2 PPU control unit contains two index registers called “i” and “j”.  The j index register 

corresponds to the “j” variable in the BM algorithm shown in Figure 24.  The i index register is used to 

indicate which coefficients of L(x), aL(x), V(x), and aV(x) the PPU is currently generating. 

The L section in the P=2 PPU computes two new L(x) and two new aL(x) coefficients in each clock 

cycle. 

The V section in the P=2 PPU computes two new V(x) and two new aV(x) coefficients in each clock 

cycle. 

The degree of L(x) is initially 0.  The degree of L(x) increases as needed and, when correction is 

successful, the degree of L(x) will be equal to the value of the “degLx” variable.  The degLx value 

should be the same as the number of errors corrected when correction takes place in the XOR module.  

If the degLx is not the same as the number of errors corrected by the XOR module, then the decoder has 

detected an uncorrectable error pattern. 

The Branch Section as shown in Figure 27 contains two more multipliers than the Branch Section for the 

RS design.  The inputs to the branch section are only updated at the end of computing new L and V 

values so an extra clock cycle could be inserted at the end of each polynomial iteration of the EBM 

algorithm to allow for the extra delay of the two additional multipliers if necessary without significantly 

decreasing the performance.  This was not done for the current designs. 

27.1. PPU Versions 

All of the PPU versions described in this document have a variable latency.  The latency depends upon 

the number of errors that have actually occurred. 

27.1.1. PPUC1 

PPUC1 is a P=2 PPU and operates on two L(x) and two V(x) polynomial coefficients simultaneously 

and has a variable delay depending upon the number of errors that actually occurred.  

The PPUC1 latency is tT + overhead where t is the number of errors the decoder is configured to correct 

and T is the number of errors that have actually occurred.  
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27.1.2. PPUF1 

PPUF1 is a fully parallelized PPU.   The level of parallelism is P=2t. 

The PPUF1 latency is T + overhead which is about as fast as ECC Tek can make a PPU.  The only way 

a PPU could be made faster is to implement a very high gate count INIT module which is probably 

impractical. 

PPUF1 instantiates many Coefficient Processing Unit (CPU) modules so that all of the coefficients of 

L(x), aL(x), V(x) and aV(x) are operated on and updated simultaneously. 

Since PPUF1 almost certainly contains many more gates than Customer can accommodate, it is not 

described in detail in this document. 

28. INIT 

 

29. EVAL 

30. XOR 

 


